

Vishay Semiconductors

Small Signal Schottky Diodes

Features

- · For general purpose applications
- The LL101 series is a metal-on-silicon Schottky barrier device which is protected by a PN junction guard ring.

- · Integrated protection ring against static discharge
- Low capacitance

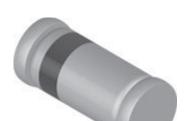
applications.

- · Low leakage current
- This diode is also available in the DO-35 case with type designation SD101A, B, C and in the SOD-123 case with type designation SD101AW-V, SD101BW-V, SD101CW-V
- AEC-Q101 qualified
- Compliant to RoHS directive 2002/95/EC and in accordance to WEEE 2002/96/EC

Applications

- HF-Detector
- Protection circuit
- Diode for low currents wits a low supply voltage
- Small battery charger
- Power supplies
- DC/DC converter for notebooks

Parts Table


Part	Type differentiation	Ordering code	Remarks
LL101A	$V_R = 60 \text{ V}, V_F \text{ at } I_F \text{ 1 mA max. 410 mV}$	LL101A-GS18 or LL101A-GS08	Tape and Reel
LL101B	$V_R = 50 \text{ V}, V_F \text{ at } I_F 1 \text{ mA max. } 400 \text{ mV}$	LL101B-GS18 or LL101B-GS08	Tape and Reel
LL101C	$V_R = 40 \text{ V}, V_F \text{ at } I_F 1 \text{ mA max. } 390 \text{ mV}$	LL101C-GS18 or LL101C-GS08	Tape and Reel

Absolute Maximum Ratings

 $T_{amb} = 25$ °C, unless otherwise specified

Parameter	Test condition	Part	Symbol	Value	Unit
		LL101A	V _{RRM}	60	V
Peak inverse voltage		LL101B	V _{RRM}	50	V
		LL101C	V _{RRM}	40	V
Power dissipation (infinite heatsink)			P _{tot}	400 ¹⁾	mW
Forward continuous current			I _F	30	mA
Maximum single cycle surge 10 µs square wave			I _{FSM}	2	А

¹⁾ Valid provided that electrodes are kept at ambient temperature

Mechanical Data

Case: MiniMELF SOD-80
Weight: approx. 31 mg
Cathode band color: black
Packaging codes/options:

94 9371

GS18 / 10 k per 13" reel (8 mm tape), 10 k/box GS08 / 2.5 k per 7" reel (8 mm tape), 12.5 k/box

LL101A, LL101B, LL101C

Vishay Semiconductors

Thermal Characteristics

T_{amb} = 25 °C, unless otherwise specified

Parameter	Test condition	Symbol	Value	Unit	
Junction temperature		T _j	125	°C	
Storage temperature range		T _{stg}	- 65 to + 150	°C	
Thermal resistance junction to ambient air	on PC board 50 mm x 50 mm x 1.6 mm	R _{thJA}	320	K/W	

Electrical Characteristics

T_{amb} = 25 °C, unless otherwise specified

Parameter	Test condition	Part	Symbol	Min	Тур.	Max	Unit
	I _R = 10 μA	LL101A	V _(BR)	60			V
Reverse Breakdown Voltage		LL101B	V _(BR)	50			V
		LL101C	V _(BR)	40			V
	V _R = 50 V	LL101A	I _R			200	nA
Leakage current	V _R = 40 V	LL101B	I _R			200	nA
	V _R = 30 V	LL101C	I _R			200	nA
	I _F = 1 mA	LL101A	V _F			410	mV
	I _F = 1 mA	LL101B	V _F			400	mV
Commend wells are always	I _F = 1 mA	LL101C	V _F			390	mV
Forward voltage drop	I _F = 15 mA	LL101A	V _F			1000	mV
		LL101B	V _F			950	mV
		LL101C	V _F			900	mV
	$V_R = 0 V, f = 1 MHz$	LL101A	C _D			2.0	pF
Diode capacitance	V _R = 0 V, f = 1 MHz	LL101B	C _D			2.1	pF
		LL101C	C _D			2.2	pF
Reverse recovery time	$I_F = I_R = 5 \text{ mA},$ recover to 0.1 I_R		t _{rr}			1	ns

Typical Characteristics

T_{amb} = 25 °C, unless otherwise specified

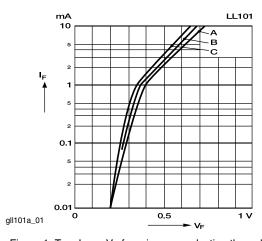


Figure 1. Typ. I_F vs. V_F for primary conduction through the Schottky barrier

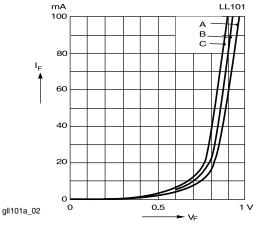


Figure 2. Typ. I_F of combination Schottky barrrier and PN junction guard ring

Vishay Semiconductors

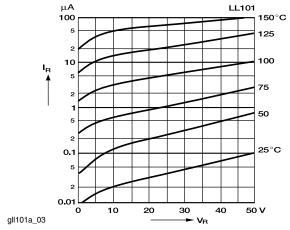


Figure 3. Typical Variation of Reverse Current at Various Temperatures

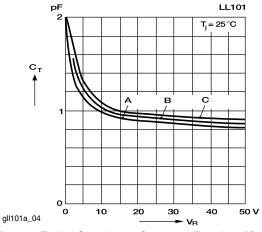
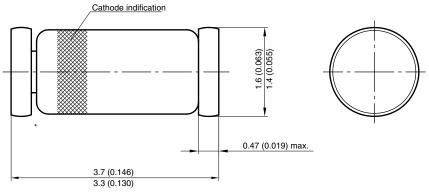
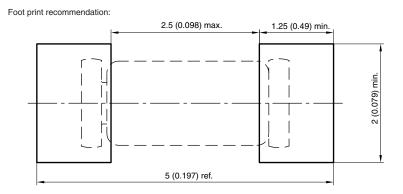
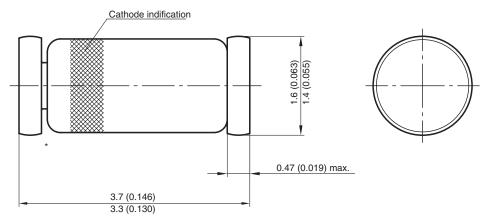




Figure 4. Typical Capacitance Curve as a Function of Reverse Voltage

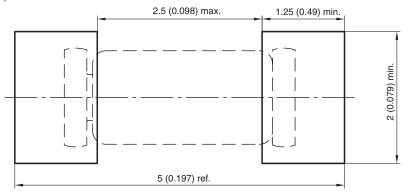
Package Dimensions in millimeters (inches): MiniMELF SOD-80

* The gap between plug and glass can be either on cathode or anode side



Document no.:6.560-5005.01-4 Rev. 8 - Date: 07.June.2006

96 12070


Vishay Semiconductors

PACKAGE DIMENSIONS in millimeters (inches)

* The gap between plug and glass can be either on cathode or anode side

Foot print recommendation:

Document no.:6.560-5005.01-4 Rev. 8 - Date: 07.June.2006 96 12070

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Revision: 11-Mar-11